Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Sub-sections</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>5</td>
<td>1.1.5.6 Intense sweeteners</td>
<td>51</td>
</tr>
<tr>
<td>1.1.5.7 Synergistic effects of blends</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>7</td>
<td>1.1.6 Total sweetener consumption and outlook</td>
<td>52</td>
</tr>
<tr>
<td>About the Editors</td>
<td>9</td>
<td>1.2 Sugar – Ingredient for the household and the food industry</td>
<td>52</td>
</tr>
<tr>
<td>List of symbols</td>
<td>26</td>
<td>1.2.1 Emotional and psychological relationships</td>
<td>53</td>
</tr>
<tr>
<td>List of subscripts</td>
<td>28</td>
<td>1.2.2 Sugar and nutrition</td>
<td>53</td>
</tr>
<tr>
<td>List of contributors</td>
<td>33</td>
<td>1.2.3 Health aspects of sugar</td>
<td>55</td>
</tr>
<tr>
<td>1 Sugar</td>
<td>37</td>
<td>1.2.4 Theory of sweetness</td>
<td>57</td>
</tr>
<tr>
<td>1.1 Historical overview of sweeteners</td>
<td>37</td>
<td>1.2.5 Sensory properties, molecular structure and relative sweetness</td>
<td>58</td>
</tr>
<tr>
<td>1.1.1 Honey and fruit juice concentrates</td>
<td>37</td>
<td>1.2.6 Sugar in the sweetener market</td>
<td>60</td>
</tr>
<tr>
<td>1.1.2 Sugar crops</td>
<td>38</td>
<td>1.2.6.1 Functional properties</td>
<td>60</td>
</tr>
<tr>
<td>1.1.2.1 Sugarcane</td>
<td>38</td>
<td>1.2.6.2 Competitive sweeteners</td>
<td>60</td>
</tr>
<tr>
<td>1.1.2.2 Sugar palm, sweet corn, sugar maple</td>
<td>40</td>
<td>1.3 Sugar – raw material for the chemical and fermentation industry</td>
<td>63</td>
</tr>
<tr>
<td>1.1.2.3 Sugarbeet</td>
<td>40</td>
<td>1.3.1 Oxidation</td>
<td>63</td>
</tr>
<tr>
<td>1.1.3 Sugar production</td>
<td>41</td>
<td>1.3.2 Hydrogenation/reductive amination</td>
<td>65</td>
</tr>
<tr>
<td>1.1.3.1 Preindustrial cane sugar production</td>
<td>41</td>
<td>1.3.3 HMF production</td>
<td>67</td>
</tr>
<tr>
<td>1.1.3.2 Early beet sugar production</td>
<td>42</td>
<td>1.3.4 Sucrose-based esters</td>
<td>67</td>
</tr>
<tr>
<td>1.1.3.3 Changes in sugar production and trade in the 19th century</td>
<td>42</td>
<td>1.3.5 Polyeurethane</td>
<td>68</td>
</tr>
<tr>
<td>1.1.3.4 Advances in sugar technology</td>
<td>43</td>
<td>1.3.6 Fermentation</td>
<td>68</td>
</tr>
<tr>
<td>1.1.4 Sugar in the world economy</td>
<td>45</td>
<td>1.3.7 Separation of invert sugar into glucose and fructose</td>
<td>69</td>
</tr>
<tr>
<td>1.1.4.1 Development of the sugar industry in the 20th century</td>
<td>45</td>
<td>1.3.8 Sugar as a timber preservative</td>
<td>69</td>
</tr>
<tr>
<td>1.1.4.2 Changes in sugar consumption</td>
<td>46</td>
<td>1.4 Physicochemical properties of sucrose</td>
<td>70</td>
</tr>
<tr>
<td>1.1.4.3 Importance of by-products</td>
<td>47</td>
<td>1.4.1 Chemical structure and conformation</td>
<td>70</td>
</tr>
<tr>
<td>1.1.4.4 Sugar as a renewable resource: Sugar in the chemical industry</td>
<td>48</td>
<td>1.4.2 States of matter of sucrose</td>
<td>70</td>
</tr>
<tr>
<td>1.1.5 Other sweeteners</td>
<td>48</td>
<td>1.4.3 Crystalline phase</td>
<td>70</td>
</tr>
<tr>
<td>1.1.5.1 Starch sugars</td>
<td>48</td>
<td>1.4.4 Amorphous sugar</td>
<td>71</td>
</tr>
<tr>
<td>1.1.5.2 Fructose</td>
<td>49</td>
<td>1.4.5 Properties of crystalline sucrose</td>
<td>72</td>
</tr>
<tr>
<td>1.1.5.3 Lactose, lactose hydrolysates</td>
<td>50</td>
<td>1.4.5.1 Properties of granulated sugar in bulk form</td>
<td>74</td>
</tr>
<tr>
<td>1.1.5.4 Sugar alcohols (polyols)</td>
<td>50</td>
<td>1.4.5.2 Properties of sucrose solutions</td>
<td>75</td>
</tr>
<tr>
<td>1.1.5.5 Diabetic sweeteners</td>
<td>51</td>
<td>1.4.5.3 Theory of sucrose in solution</td>
<td>75</td>
</tr>
<tr>
<td>1.1.5.6 Intense sweeteners</td>
<td>51</td>
<td>1.4.5.4 Structurally determined properties</td>
<td>76</td>
</tr>
<tr>
<td>1.2 Sugar – Ingredient for the household and the food industry</td>
<td>53</td>
<td>1.4.6 Optical and magnetic properties</td>
<td>81</td>
</tr>
<tr>
<td>1.2.1 Emotional and psychological relationships</td>
<td>53</td>
<td>1.4.7 Thermodynamic properties</td>
<td></td>
</tr>
<tr>
<td>1.2.2 Sugar and nutrition</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.3 Health aspects of sugar</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.4 Theory of sweetness</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.5 Sensory properties, molecular structure and relative sweetness</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.6 Sugar in the sweetener market</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.6.1 Functional properties</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.6.2 Competitive sweeteners</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Sugar – raw material for the chemical and fermentation industry</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.1 Oxidation</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2 Hydrogenation/reductive amination</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3 HMF production</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.4 Sucrose-based esters</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.5 Polyeurethane</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.6 Fermentation</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.7 Separation of invert sugar into glucose and fructose</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.8 Sugar as a timber preservative</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.9 Chemical structure and conformation</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.10 States of matter of sucrose</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.11 Crystalline phase</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.12 Amorphous sugar</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.13 Properties of crystalline sucrose</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.14 Properties of granulated sugar in bulk form</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.15 Properties of sucrose solutions</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.16 Theory of sucrose in solution</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.17 Structurally determined properties</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.18 Optical and magnetic properties</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.19 Thermodynamic properties</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.5 Quality criteria of white sugar and its commercial grades 84

1.5.1 Limiting values in international standards 84

1.5.1.1 Codex Alimentarius 84

1.5.1.2 EU sugar standards 86

1.5.1.3 Standards of the EU sugar market regime 87

1.5.1.4 US Food Chemical Codex 88

1.5.1.5 Other standards and guidelines 89

1.5.2 Individual criteria in international standards 90

1.5.2.1 Sucrose 90

1.5.2.2 Invert sugar 90

1.5.2.3 Ash and conductivity 91

1.5.2.4 Water 91

1.5.2.5 Color and turbidity of the solution 93

1.5.2.6 Visual appearance (color type) 95

1.5.2.7 Sulfur dioxide 95

1.5.2.8 Contaminants 96

1.5.2.9 Raffinose and theanderose in white sugar 97

1.5.3 International Pharmacopoeia 97

1.5.3.1 European Pharmacopoeia 97

1.5.3.2 United States Pharmacopoeia 98

1.5.4 Specific criteria 98

1.5.4.1 Microbiological criteria and standards 98

1.5.4.2 Physical and chemical criteria 98

2 Composition of sugarbeet and sugarcane and chemical behavior of constituents in processing 115

2.1 Composition of sugarbeet 115

2.1.1 Overview 115

2.1.2 Relative distribution of beet constituents 115

2.1.3 Composition of the cell wall 117

2.1.3.1 Marc, marc hydrate, and juice content 117

2.1.3.2 Composition of the marc and properties of marc components 118

2.1.3.2.1 Cellulose 118

2.1.3.2.2 Pectic substances 119

2.1.3.2.3 Hemicelluloses 122

2.1.4 Composition of cell juice 123

2.1.4.1 Nitrogen-free compounds 123

2.1.4.1.1 Monosaccharides 123

2.1.4.1.2 Oligosaccharides 126

2.1.4.1.3 Polysaccharides 128

2.1.4.1.4 Organic and inorganic anions 129

2.1.4.1.5 Inorganic cations and ash 133

2.1.4.1.6 Saponins 135

2.1.4.1.7 Lipids 137

2.1.4.1.8 Odor substances 137

2.1.4.1.9 Phenolic compounds 150

2.1.4.2 Nitrogenous compounds 138

2.1.4.2.1 Overview 138

2.1.4.2.2 Amino acids and amides 140

2.1.4.2.3 Proteinaceous substances 144

2.1.4.2.4 Plant bases and lecithin 146

2.1.4.2.5 Nucleic acids, pyrimidine and purine bases, allantoin 148

2.1.4.2.6 Phenolic compounds 150

2.1.4.2.7 Vitamins 151

2.1.4.2.8 Composition of sugarcane fiber and bagasse 151

2.1.4.2.9 Composition of sugarcane juice constituents 152

2.1.4.2.10 Reactions of beet cell-wall constituents 157

2.1.4.2.11 During storage 157

2.1.4.2.12 During extraction 158

2.1.4.2.13 During ensiling of pressed pulp 161

2.1.4.2.14 Chemical reaction of fine pulp in juice purification 162

2.1.4.2.15 Reactions of juice constituents 163

2.1.4.2.16 Saccharides 163

2.1.4.2.17 Glucose, fructose (invert sugar) degradation 170

2.1.4.2.18 Further saccharides 177

2.1.4.2.19 Nonsugars 179

2.1.4.2.20 Organic N-free acids 179

2.1.4.2.21 Amino acids 181

2.1.4.2.22 Glutamine degradation 183

2.1.4.2.23 Other nitrogenous substances 185

2.1.4.2.24 Phenolic compounds 186

2.1.4.2.25 Other constituents 186

2.1.4.2.26 Protein, nucleic acids and nucleic building blocks 187

2.1.4.2.27 Inorganic anions 188
2.4.2.9 Inorganic cations 189
2.4.3 Color formation 189
2.4.3.1 Melanin formation 189
2.4.3.2 Melanoidin formation (Maillard reaction) 192
2.4.3.3 Caramelization 197
2.4.3.4 Strecker degradation 199
2.4.3.5 Inhibitors 200

3 Quality of sugarbeet and sugarcane 209
3.1 Morphology and physical properties of sugarbeet 209
3.1.1 Morphology 209
3.1.2 Ultrastructure of the native sugarbeet root 211
3.1.3 Physical properties of beet 212
3.1.4 Physical data of sugarbeet piles 214
3.1.5 Physical properties of beet after denaturation 215
3.2 Formulas to calculate sugar losses in molasses, nonsugar content in thick juice and resulting pH value (alkalinity) of thick juice from beet analysis 216
3.3 Structure, propagation and physiology of the sugarcane plant 225
3.3.1 External structure of the sugarcane plant 225
3.3.2 Vegetative propagation 228
3.4 Sugarcane quality evaluation 230

4 Beet and cane harvesting 239
4.1 Sugarbeet harvesting 239
4.1.1 Harvesting operations 239
4.1.2 Topping and lifting quality 240
4.1.3 Area capacity of harvesting systems 241
4.1.4 Harvesting and utilization of leaves and tops 242
4.1.5 Soil content 242
4.1.6 Beet storage in field clamps 243
4.1.7 Transport to the factory 244
4.2 Cane harvesting 245
4.2.1 Implementing a mechanized harvesting system 245
4.2.2 Fully mechanized whole-stick harvesting systems 245
4.2.3 Chopper harvesting systems 246
4.2.4 Choice between chopper and whole-stick harvester 246
4.3 Cane transport 248
4.4.1 Cane loading 248
4.4.2 Soil compaction 249

5 Reception, storage and washing 251
5.1 Determination of beet payment parameters 251
5.1.1 Weighing and sampling 251
5.1.2 Sampling 253
5.1.3 Top and soil tare determination 253
5.1.4 Analysis 254
5.1.5 Brei preparation 254
5.1.6 Digestion and clarification 255
5.1.7 Sucrose by polarimetry 256
5.1.8 Alternative sucrose determination methods 256
5.1.9 Determination of nonsugars 257
5.1.10 Reproducibility of analyses in automatic beet laboratories 259
5.1.11 Determination of cane payment parameters 260
5.1.12 Weighing 260
5.1.13 Core sampling 260
5.1.14 Full width hatch sampler 261
5.1.15 Comparison of core, grab, and hatch samplers 261
5.1.16 First expressed juice 263
5.2 Determination of cane sucrose content (single polarization) 264
5.2.1 Wet desintegrator method 264
5.2.2 Hydraulic press method 264
5.2.3 Analysis of first expressed juice 265
5.2.4 Analysis of mixed juice and final bagasse 266
5.2.5 Beets unloading 266
5.2.6 Sugarbeet storage 267
5.4 Chemical and biochemical
5.4.1.1 Biochemical reactions of respiration 268
5.4.1.2 Microbiology of beet in storage 269
5.4.2 Factors affecting the technological value of beet during storage 270
5.4.2.1 Temperature 270
5.4.2.2 CO₂ and O₂ contents of the surrounding air 271
5.4.2.3 Relative humidity 272
5.4.2.4 Beet quality after harvesting 272
5.4.3 Changes in the chemical composition of beet 275
5.4.3.1 Sugar losses 275
5.4.3.2 Soluble carbohydrates 276
5.4.3.3 Soluble non-carbohydrates 278
5.4.3.4 Insoluble substances, marc 279
5.4.4 Physical changes of beet in storage 279
5.4.5 Storage conditions for minimal sugar losses by respiration 280
5.4.6 Beet storage methods and conditions 281
5.4.6.1 Short-term storage at the factory 282
5.4.6.2 Clamp storage (Europe) 282
5.4.6.3 Long-term storage 284
5.4.7 Inhibition of infections with chemicals 287
5.5 Beet preparation processes 290
5.5.1 Losses of beet mass and sugar 290
5.5.2 Transport of beet from storage/reception point to washing plant 292
5.5.2.1 Hydraulic transport 292
5.5.2.2 Dry beet transport 293
5.5.3 Washing systems 295
5.5.4 Equipment for washing systems 296
5.5.4.1 Beet washers 296
5.5.4.2 Stone separators 297
5.5.4.3 Trash separators 298
5.5.4.4 Water separators 299
5.5.5 Mechanical purification of transport and wash water 299
5.5.5.1 Removal of fine organic material by vibrating screens 299
5.5.5.2 Soil separation 300
5.5.6 Treatment of separated vegetable and beet particulate matter 301
5.5.6.1 Recovery of beet particulate matter 301
5.5.6.2 Recovery of vegetable matter 302
6.1 Extraction theory 309
6.1.1 Introduction 310
6.1.2 Simplified model of countercurrent extraction 311
6.1.3.1 Denaturation 318
6.1.4 Cossette geometry, dimension and size distribution 323
6.1.5 Hydrodynamic effect on material transport 325
6.1.6 Complex modelling of technical extraction systems 326
6.1.7 Sugarcane diffusion 327
6.2 Technical extraction of beet 328
6.2.1 Production of cossettes 328
6.2.2 Stepwise countercurrent extraction 326
6.2.3 Slicing machines 329
6.2.4 Knives 332
6.3 Knife consumption 334
6.2.1.5 Ventilation of slicing machine operating position

6.2.2 Process parameters of extraction
6.2.2.1 Process conditions
6.2.2.2 Extraction water
6.2.2.3 Presence of oxygen during extraction
6.2.2.4 Extractor operation with deteriorated beet

6.2.3 Theoretical mass balance of the extraction
6.2.4 Energy aspects
6.2.5 Equipment for cell denaturation and the cooling of raw juice
6.2.5.1 Scalders without heat recovery
6.2.5.2 Juice/cossette heat exchangers with short and controlled retention times
6.2.5.3 Exchanger-mixers of tower extractors
6.2.6 Beet extractors
6.2.6.1 Principles of transport in extraction equipment
6.2.6.2 Controlled transport of solid phase/liquid phase
6.2.6.3 Controlled transport of solid and uncontrolled transport of liquid phase
6.2.6.4 Uncontrolled transport of solid and liquid phase
6.2.7 Fine pulp separation and desanding
6.2.8 Other extraction processes
6.2.9 Raperie, juice station
6.2.10 Extraction of beet under alkaline conditions
6.2.10.1 History and present status
6.2.10.2 Chemical reactions during alkaline extraction
6.2.10.3 Process steps
6.2.10.4 Juice and pulp composition
6.2.10.5 Pulp pressing
6.2.10.6 UCB process
6.2.11 Solvent extraction of dried sugarbeet cossettes
6.3 Technical extraction of sugar from cane
6.3.1 Cane unloading
6.3.2 Cane preparation (comminution)

6.3.1.5 Measurement of fineness
6.3.2.1 Description of heavy-duty shredders
6.3.2.2 Mechanics of the swing hammer shredder
6.3.2.3 Specific energy consumption for shredding
6.3.3 Cane mills
6.3.3.1 Crushing trains
6.3.3.2 Feeding of mills
6.3.3.3 Roll speed required for feeding
6.3.3.4 Feed and delivery pressures
6.3.3.5 Chutes for cane and bagasse mills
6.3.3.6 Pressure system between the rolls
6.3.3.7 Roll load
6.3.3.8 Roll torque and the torque-load number
6.3.3.9 Loads and torques in the three-roll mill
6.3.3.10 Mill setting estimation
6.3.3.11 Extraction theory for mills
6.3.3.12 Extraction efficiency of a single mill
6.3.3.13 Extraction efficiency of a train of mills
6.3.3.14 Extraction efficiency – reabsorption factor
6.3.3.15 Extraction efficiency – imbibition coefficient
6.3.4 Cane diffusers
6.3.4.1 Plant and equipment
6.3.4.2 Factors affecting extraction efficiency
6.3.4.3 Comparison with milling
6.3.4.4 Control of cane diffusers
6.3.5 Mass balances

7 Pressed and dried pulp
7.1 Mechanical dewatering
7.1.1 Effect of the extractor operation
7.1.2 Application of pressing aids in extraction
7.1.3 Special procedures to improve pressing properties
7.1.4 Pulp presses
7.1.5 Operating mode of pulp presses
Contents

7.1.6 Handling of pressed pulp 397 7.4.3 Safety 429
7.2 Preservation of pressed pulp by ensiling 398 7.4.4 Quality parameters 430
7.2.1 Effect of temperature on ensiling 399 7.5 Uses of beet pulp 430
7.2.2 Effect of dry substance content on ensiling 400 7.5.1 Animal Feed pulp 430
7.2.3 Addition of ensiling aids to pressed pulp 400 7.5.1.1 European Union 432
7.2.4 Addition of molasses and molasses-mineral-urea mixtures 402 7.5.1.2 USA and Japan 435
7.3 Thermal dewatering 402 7.6.1 Fiber as an ingredient of human diet 443
7.3.1 Properties of pulp as a drying medium 402 7.6.2 Beet fiber 444
7.3.1.1 Mass and thermal balance of pulp drying 403 7.6.3 Cane fiber 445
7.3.1.2 Sorption isotherms of pressed pulp 404
7.3.1.3 Drying kinetics 405 8 Utilization of bagasse 451
7.3.2 High temperature drying 406 Composition and physical characteristics of bagasse 451
7.3.2.1 Production of hot gas 406 Physical characteristics 454
7.3.2.2 Drying devices 406 8.1 Burning or calorific value of bagasse 455
7.3.2.3 Additions to the pulp before drying 407 Bagasse handling and storage 456
7.3.2.4 Composition of exhaust gas and its purification 407 Bagasse depithing 457
7.3.2.5 Energy calculations 409 8.2 Bagasse drying 459
7.3.2.6 Possibilities for energy savings 411 8.3 Bagasse combustion 461
7.3.3 Low temperature drying 412 8.4 Principles of bagasse burning 462
7.3.4 Drying using superheated steam 414 8.5 Thermal efficiency of bagasse burning 463
7.3.4.1 Energy aspects 414 Burning of bagasse residues 464
7.3.4.2 Types of driers used 416 8.6.1 Furnaces of bagasse-fired steam boilers 465
7.3.5 Drying with solar and wind energy 418 Fly ash separation from bagasse-fired steam boiler flue gas 470
7.3.5.1 Climatic requirements 419 8.6.5 Utilization of bagasse other as a fuel 471
7.3.5.2 Economics of solar versus high temperature drying 419 8.7 Pentosans 471
7.3.5.3 Construction of solar drying surface 419 8.7.1 Fibrous products from bagasse 473
7.3.5.4 Drying process 420 8.7.3 Bagasse as a raw material in agronomy and husbandry 474
7.3.6 Process control for pulp driers 420 8.7.3.1 Bagasse in husbandry 474
7.3.6.1 Measurement devices 421 8.7.3.2 Bagasse as a substrate for the production of edible mushrooms 475
7.3.6.2 Control strategy 421 8.7.3.3 Composting of bagasse 475
7.4 Pulp pelleting 424 8.8 Health hazards in bagasse handling – bagassosis 477
7.4.1 Pelleting plant 424
7.4.1.1 Conditioning and molassing 424
7.4.1.2 Pelleting press 425
7.4.1.3 Cooling/drying 427
7.4.2 Storage and transport 429
8.7.3.3 Utilization of bagasse other as a fuel 471
8.7.3.3 Pentosans 471
8.7.3.3 Fibrous products from bagasse 473
8.7.3.3 Bagasse as a raw material in agronomy and husbandry 474
8.7.3.3 Bagasse in husbandry 474
8.7.3.3 Bagasse as a substrate for the production of edible mushrooms 475
8.7.3.3 Composting of bagasse 475
8.7.3.3 Health hazards in bagasse handling – bagassosis 477
8.7.3.3 Juice purification 479
8.6.1 Furnaces of bagasse-fired steam boilers 465
8.6.5 Fly ash separation from bagasse-fired steam boiler flue gas 470
8.6.5 Utilization of bagasse other as a fuel 471
8.6.5 Pentosans 471
8.6.5 Fibrous products from bagasse 473
8.6.5 Bagasse as a raw material in agronomy and husbandry 474
8.6.5 Bagasse in husbandry 474
8.6.5 Bagasse as a substrate for the production of edible mushrooms 475
8.6.5 Composting of bagasse 475
8.6.5 Health hazards in bagasse handling – bagassosis 477
8.6.5 Juice purification 479
8.6.4 Furnaces of bagasse-fired steam boilers 465
8.6.4 Fly ash separation from bagasse-fired steam boiler flue gas 470
8.6.4 Utilization of bagasse other as a fuel 471
8.6.4 Pentosans 471
8.6.4 Fibrous products from bagasse 473
8.6.4 Bagasse as a raw material in agronomy and husbandry 474
8.6.4 Bagasse in husbandry 474
8.6.4 Bagasse as a substrate for the production of edible mushrooms 475
8.6.4 Composting of bagasse 475
8.6.4 Health hazards in bagasse handling – bagassosis 477
8.6.4 Juice purification 479
9.1 Chemical and physical properties 479
 9.1.1 Solubilities and dissociation equilibria 480
 9.1.1.1 Solubility of calcium hydroxide in pure and technical sugar solutions 481
 9.1.2 Solubility of calcium carbonate and other calcium salts 481
 9.1.3 Solubility of carbon dioxide and dissociation of carbonic acid 483
 9.1.4 Dissociation of ammonia 484
 9.1.5 Chemical reactions and process steps of the lime/carbonic acid juice purification 484
 9.1.6 Cation/anion balances in juice purification 486
 9.1.7 Optimum flocculation point in preliming and first carbonation 492
 9.1.8 Overcarbonation 493
 9.1.9 Minimizing of CaO consumption 494
 9.1.10 Filtration and sedimentation 495
 9.1.10.1 Filtration – theoretical background 497
 9.1.10.2 Sedimentation – theoretical background 497
 9.1.10.3 Methods for the determination of filtrability 498
 9.1.10.4 Determination of residual slurry in the filtrate 499
 9.1.10.5 Method for determination of sedimentation rate 499
 9.1.10.6 Determination of sugar in the carbonation lime 500
 9.2 Juice purification systems 500
 9.2.1 Processes with alkaline invert sugar degradation 500
 9.2.1.1 Traditional batch process 500
 9.2.1.2 Traditional process with continuous preliming 503
 9.2.1.3 Continuous systems with a clarifier 504
 9.2.2 Processes with limited invert sugar degradation 507
 9.2.2.1 Beet sugar 507
 9.2.2.2 Processes in cane sugar manufacture 509
 9.2.2.3 Special processing steps in beet juice purification 511
 9.2.2.4 Removal of the precipitate after preliming 511
 9.2.2.5 Dry liming 511
 9.2.2.6 MZ method 512
 9.2.2.7 Juice purification methods for deteriorated beet 512
 9.2.2.8 Sultitation 513
 9.2.2.9 Sultitation in beet sugar manufacture 513
 9.2.2.10 Security filtration 514
 9.2.2.11 White sugar production without sultitation 514
 9.2.2.12 Phosphate purification of syrups 515
 9.2.2.13 Talodura thick juice purification 515
 9.2.2.14 Talofloc process 515
 9.2.2.15 Sulfite reaction with nitrite 514
 9.2.2.16 Purification of thick juice and syrups 514
 9.2.2.17 Sulfitation and carbonation processes for refined sugar manufacture 516
 9.2.2.18 Guangdong flotation process 516
 9.2.2.19 New magnesia clarifying process for refineries 516
 9.2.2.20 Ozonization for removal of color, etc. 516
 9.2.2.21 Use of activated carbon 516
 9.2.2.22 Softening of juice by ion exchangers 517
 9.2.2.23 Classical decalcification 517
 9.2.2.24 N.R.S. (New Regenerant Solution) process 518
 9.2.2.25 Gryllus process 519
 9.2.2.26 Anion exchange used for softening of juice 519
 9.2.2.27 Membrane separation processes 520
 9.2.2.28 Ultrafiltration of juices 520
 9.2.2.29 Nanofiltration of thin juice 521
 9.2.2.30 Microfiltration 521
 9.2.2.31 Electrodialysis 522
 9.2.2.32 Equipment for juice purification 523

9.3 Equipment for juice purification 523
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1 Equipment for liming</td>
<td>523</td>
</tr>
<tr>
<td>9.3.1.1 Prelimiters</td>
<td>523</td>
</tr>
<tr>
<td>9.3.1.2 Main liming tanks</td>
<td>525</td>
</tr>
<tr>
<td>9.3.2 Equipment for carbonation</td>
<td>526</td>
</tr>
<tr>
<td>9.3.2.1 1st Carbonation tanks</td>
<td>526</td>
</tr>
<tr>
<td>9.3.2.2 Gas distribution systems</td>
<td>528</td>
</tr>
<tr>
<td>9.3.2.3 Gas cleaning after the carbonation tank</td>
<td>529</td>
</tr>
<tr>
<td>9.3.2.4 2nd Carbonation tanks</td>
<td>529</td>
</tr>
<tr>
<td>9.3.3 Equipment for clarification and carbonation lime desweetening</td>
<td>529</td>
</tr>
<tr>
<td>9.3.3.1 Clarifiers</td>
<td>530</td>
</tr>
<tr>
<td>9.3.3.2 Flotation equipment</td>
<td>533</td>
</tr>
<tr>
<td>9.3.3.3 Filter cloth</td>
<td>533</td>
</tr>
<tr>
<td>9.3.3.4 Thickening filters</td>
<td>534</td>
</tr>
<tr>
<td>9.3.3.5 Rotary drum filters</td>
<td>536</td>
</tr>
<tr>
<td>9.3.3.6 Traditional filter presses</td>
<td>538</td>
</tr>
<tr>
<td>9.3.3.7 Filters for the production of filter cake having a high dry substance content</td>
<td>539</td>
</tr>
<tr>
<td>9.3.3.8 Security filters and polishing filters</td>
<td>542</td>
</tr>
<tr>
<td>9.3.3.9 Ceramic filters</td>
<td>542</td>
</tr>
<tr>
<td>9.3.3.10 Centrifuges</td>
<td>543</td>
</tr>
<tr>
<td>9.3.3.11 Hydrocyclones</td>
<td>543</td>
</tr>
<tr>
<td>9.4 Use of carbonation lime from beet</td>
<td>544</td>
</tr>
<tr>
<td>9.4.1 Carbonation lime: composition and utilization</td>
<td>544</td>
</tr>
<tr>
<td>9.4.1.1 Composition of carbonation lime</td>
<td>545</td>
</tr>
<tr>
<td>9.4.1.2 Nutrient effects of carbonation lime</td>
<td>545</td>
</tr>
<tr>
<td>9.4.2 Recalcing of carbonation lime</td>
<td>547</td>
</tr>
<tr>
<td>9.4.2.1 Composition and quality parameters</td>
<td>548</td>
</tr>
<tr>
<td>9.4.2.2 Rotary kiln</td>
<td>550</td>
</tr>
<tr>
<td>9.4.2.3 Multiple-hearth kiln</td>
<td>551</td>
</tr>
<tr>
<td>9.4.2.4 Operating data, energy demand of recalcination plants and the quality of recalcined lime</td>
<td>552</td>
</tr>
<tr>
<td>9.5 Cane sugar factory filter cake: composition and utilization</td>
<td>554</td>
</tr>
<tr>
<td>9.5.1 Composition and yield</td>
<td>554</td>
</tr>
<tr>
<td>9.5.2 Utilization</td>
<td>555</td>
</tr>
<tr>
<td>9.5.2.1 Soil conditioner</td>
<td>555</td>
</tr>
<tr>
<td>9.5.2.2 Soil fertilizer</td>
<td>558</td>
</tr>
<tr>
<td>9.5.2.3 Wax production</td>
<td>558</td>
</tr>
<tr>
<td>9.6 Continuous on-line sensors and control of juice purification</td>
<td>560</td>
</tr>
<tr>
<td>9.6.1 Sensors</td>
<td>560</td>
</tr>
<tr>
<td>9.6.2 Control of juice purification</td>
<td>563</td>
</tr>
<tr>
<td>10 Lime and kiln gas production</td>
<td>571</td>
</tr>
<tr>
<td>10.1 Thermal decomposition of calcium carbonate</td>
<td>571</td>
</tr>
<tr>
<td>10.2 Quality characteristics of limestone and fuels</td>
<td>572</td>
</tr>
<tr>
<td>10.2.1 Limestone quality</td>
<td>572</td>
</tr>
<tr>
<td>10.2.2 Fuels and fuel quality</td>
<td>573</td>
</tr>
<tr>
<td>10.2.3 Equipment and operation</td>
<td>575</td>
</tr>
<tr>
<td>10.2.4 General aspects</td>
<td>575</td>
</tr>
<tr>
<td>10.3 Lime kiln gas plant</td>
<td>578</td>
</tr>
<tr>
<td>10.3.1 Lime kiln charging</td>
<td>579</td>
</tr>
<tr>
<td>10.3.2 Lime kiln discharge</td>
<td>581</td>
</tr>
<tr>
<td>10.3.3 Lime kiln lining</td>
<td>581</td>
</tr>
<tr>
<td>10.3.4 Oil- and gas fired lime kilns</td>
<td>582</td>
</tr>
<tr>
<td>10.3.5 Startup and monitoring of a coke-fired lime shaft kiln</td>
<td>583</td>
</tr>
<tr>
<td>10.3.6 Production of hydrated lime suspensions (milk of lime)</td>
<td>586</td>
</tr>
<tr>
<td>10.3.7 Reaction enthalpy in slaking</td>
<td>587</td>
</tr>
<tr>
<td>10.3.8 Batch and continuous slaking procedures</td>
<td>587</td>
</tr>
<tr>
<td>10.3.9 Equipment for milk of lime production</td>
<td>588</td>
</tr>
<tr>
<td>10.3.10 Sugar-containing slaking water</td>
<td>589</td>
</tr>
<tr>
<td>11 Evaporating, heating and heat economy</td>
<td>591</td>
</tr>
<tr>
<td>11.1 Heat supply for the sugar factory</td>
<td>591</td>
</tr>
<tr>
<td>11.1.1 Thermal cycles</td>
<td>591</td>
</tr>
<tr>
<td>11.1.2 Steam boilers</td>
<td>594</td>
</tr>
<tr>
<td>11.1.3 Emission control</td>
<td>599</td>
</tr>
<tr>
<td>11.2 Technological principles of heat economy</td>
<td>602</td>
</tr>
<tr>
<td>11.2.1 Heat economy in relation to evaporation and juice heating</td>
<td>602</td>
</tr>
<tr>
<td>11.2.2 Heat economy in cane sugar</td>
<td>602</td>
</tr>
</tbody>
</table>
factories 606
11.2.3 Heat demand 606 12.1.2.2 Effects of nonsugars on growth rate and morphology 660
11.2.4 Distribution of heating vapors and the number of evaporator effects 608 12.1.3 Crystal size distribution 665
11.2.5 Vapor compression 611 12.1.4 Conglomerares 667
11.2.6 Use of low-grade heat in evaporation 613 12.1.5 Measurement of crystal size distributions and conglomerates during crystallization 668
11.3 Chemical modifications during evaporation 614 12.1.6 Crystallization techniques 670
11.3.1 pH Value, invert sugar formation 614 12.1.6.1 Evaporating crystallization 672
11.3.2 Color formation 617 12.1.6.2 Cooling crystallization 674
11.3.3 Causes of increase in thick juice color 619 12.1.6.3 Crystallization by precipitation 675
11.3.4 Scale formation and removal 620 12.2 Process management 676
11.4 Evaporators and heat exchangers 623 12.2.1 Requirements for smooth sugar house operation 676
11.4.1 Practical requirements of the evaporator characteristics 623 12.2.1.1 Quality of feed syrups 676
11.4.2 Natural circulation calandria evaporator 625 12.2.1.2 Effect of feed syrup dry substance content on magma circulation 679
11.4.3 “Once-through” calandria evaporator and climbing-film tube-bundle evaporators 629 12.2.2 Chemical changes in sugar house syrups 680
11.4.4 Falling-film evaporators 630 12.2.3 Chemical-physical parameters 683
11.4.5 Developments in heat evaporator design 632 12.2.3.1 Solubility of sucrose in technical solutions 683
11.4.6 Condensate drainage 635 12.2.3.1.1 Influence of individual nonsugars on molasses formation 685
11.4.7 Venting of incondensable gases 637 12.2.3.1.2 Determination of solubility and the efficiency of molasses exhaustion 687
11.4.8 Juice heat exchangers 637 12.2.3.2 Viscosity 690
11.5 Principles of controlling the evaporator station 639 12.2.3.3 Crystal growth, particle numbers and crystal size 692
11.5.1 Basic elements 639 12.2.3.3.1 Parameters 692
11.5.2 Classical local control loops 639 12.2.3.3.2 Seed mass and particle numbers 695
11.5.3 Sensitivity of evaporator operation 640 12.2.3.3.3 Changes in crystallize uniformity 695
11.5.4 Concentrators 642 12.2.3.3.4 Changes in the number of particles in magmas 697
11.5.5 Sophisticated control systems 642 12.2.4 Nucleation and the crystal formation phase 697
12 Crystallization 649 12.2.4.1 Primary and secondary nucleation 697
12.1 Theoretical principles 649 12.2.4.2 Secondary nucleation in crystal suspensions (magmas) 698
12.1.1 Pure solutions 649 12.2.4.3 Conglomerate formation 698
12.1.1.1 Solubility 649 12.2.4.4 Slurry preparation 699
12.1.1.2 Nucleation 650 12.2.4.5 Seed magma from centrifuged sugar 700
12.1.1.3 Crystal growth 653 12.2.5 Crystal growth and crystallization rate 700
12.1.1.4 Morphology and twins 657 12.2.6 Color and crystal inclusions 702
12.1.2 Technical solutions 660
12.2.6.1 Color and other inclusions 703
12.2.6.2 High molecular mass compounds and salts 706
12.2.7 Seed magma work 708
12.2.7.1 Fundamentals 708
12.2.7.2 Production of seed magma 710
12.2.8 Batch evaporating crystallization 714
12.2.9 Continuous evaporating crystallization 720
12.2.9.1 Multi-chamber cascade evaporating crystallizers with forced magma transport 721
12.2.9.2 Multi-chamber crystallizers without forced transport of magma 726
12.2.10 Batch cooling crystallization 730
12.2.11 Continuous cooling crystallization 733
12.2.11.1 C sugar (afterproduct) 733
12.2.11.2 B (raw) and A (white) sugar 735
12.2.12 Flash/cooling crystallization 735
12.2.13 Process parameters for canesugar crystallization 739
12.2.13.1 Cane white sugar 739
12.2.13.2 Cane raw sugar 740
12.2.13.3 C sugar (afterproduct) operation 741
12.2.13.4 Molasses exhaustion and sucrose solubility – target purity 741
12.2.13.5 Sugar losses 742
12.2.13.6 Seed magma production 742
12.3 Control of crystallization 743
12.3.1 Principles of supersaturation and crystal content measurement 743
12.3.1.1 Electrical conductivity 743
12.3.1.2 Boiling point elevation 744
12.3.1.3 Radio frequency measurement 746
12.3.1.4 Refractive index 747
12.3.1.5 Radiometric density measurement 748
12.3.1.6 Microwaves 749
12.3.1.7 Viscosity 749
12.3.1.8 On-line crystal size observation and measurement 751
12.3.1.9 Ultrasonic absorption 752
12.3.1.10 Ultrasonic velocity measurement 753
12.3.1.11 Comparison of sensors 753
12.3.2 Batch evaporating crystallization 754
12.3.3 Continuous evaporating crystallization 756
12.3.4 Measurement of other process variables 758
12.3.5 Mass flow control in the sugar house 758
12.3.6 Continuous measurement of the produced white sugar quality 760
12.4 Crystallization schemes 762
12.4.1 Beet sugar 762
12.4.1.1 Raw sugar 763
12.4.1.2 White sugar 765
12.4.2 Cane raw sugar 767
12.4.2.1 Choice of a crystallization scheme 767
12.4.2.2 Two-stage crystallization schemes (‘Two-boiling scheme’) 768
12.4.2.3 Three-stage crystallization schemes 759
12.5 Crystallizers 771
12.5.1 Evaporating crystallizers 771
12.5.1.1 Heat transfer in evaporating crystallizers 771
12.5.1.2 Batch evaporating crystallizers 780
12.5.1.3 Continuous evaporating crystallizers 787
12.5.3 Flash/cooling crystallizers 804
12.6 Condensation 805
12.6.1 Design of condensers 806
12.6.1.1 Direct contact condensers 806
12.6.1.2 Surface condensers 808
12.6.3 Measurement of other process variables 808
12.6.3.1 Mass flow control in the sugar house 808
12.6.3.2 Continuous measurement of the produced white sugar quality 808
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6.2 Design considerations</td>
<td>809</td>
</tr>
<tr>
<td>12.6.2.1 Cooling water flow rate</td>
<td>809</td>
</tr>
<tr>
<td>12.6.2.2 Dimensioning of condensers</td>
<td>810</td>
</tr>
<tr>
<td>12.6.2.3 Incondensable gases</td>
<td>811</td>
</tr>
<tr>
<td>12.6.3 Vacuum pumps</td>
<td>811</td>
</tr>
<tr>
<td>12.6.3.1 Positive displacement pumps</td>
<td>812</td>
</tr>
<tr>
<td>12.6.4 Heat recovery in condenser systems</td>
<td>813</td>
</tr>
<tr>
<td>12.6.5 Modern condenser systems with heat recovery</td>
<td>815</td>
</tr>
<tr>
<td>12.6.6 Cooling of condenser water</td>
<td>816</td>
</tr>
<tr>
<td>12.6.7 Entrainment separators</td>
<td>817</td>
</tr>
<tr>
<td>13 Separation of the crystals from the mother liquor in centrifugals</td>
<td>829</td>
</tr>
<tr>
<td>13.1 Theoretical consideration of the separation process</td>
<td>829</td>
</tr>
<tr>
<td>13.1.1 Batch centrifugation</td>
<td>829</td>
</tr>
<tr>
<td>13.1.2 Continuous centrifugation</td>
<td>831</td>
</tr>
<tr>
<td>13.2 Operating practice – process parameters</td>
<td>833</td>
</tr>
<tr>
<td>13.2.1 Batch centrifugation</td>
<td>833</td>
</tr>
<tr>
<td>13.2.2 Continuous centrifugation</td>
<td>838</td>
</tr>
<tr>
<td>13.3 Design and structural characteristics of centrifugals</td>
<td>842</td>
</tr>
<tr>
<td>13.3.1 Batch centrifugals</td>
<td>842</td>
</tr>
<tr>
<td>13.3.1.1 Design characteristics</td>
<td>842</td>
</tr>
<tr>
<td>13.3.1.2 Nominal and real basket loads</td>
<td>848</td>
</tr>
<tr>
<td>13.3.1.3 Centrifugal drives and centrifugal control</td>
<td>849</td>
</tr>
<tr>
<td>13.3.1.4 Energy requirement</td>
<td>850</td>
</tr>
<tr>
<td>13.3.1.5 Centrifugal safety</td>
<td>850</td>
</tr>
<tr>
<td>13.3.1.6 Economic considerations</td>
<td>851</td>
</tr>
<tr>
<td>13.3.2 Continuous centrifugals</td>
<td>852</td>
</tr>
<tr>
<td>13.3.2.1 Design characteristics</td>
<td>852</td>
</tr>
<tr>
<td>13.3.2.2 Configurations</td>
<td>854</td>
</tr>
<tr>
<td>13.3.2.3 Energy requirements</td>
<td>856</td>
</tr>
<tr>
<td>13.3.2.4 Economic pointers</td>
<td>857</td>
</tr>
<tr>
<td>14 Sugar handling after the centrifugals</td>
<td>861</td>
</tr>
<tr>
<td>14.1 Handling, storage, and conditioning of raw sugar</td>
<td>861</td>
</tr>
<tr>
<td>14.1.1 Cane raw sugar</td>
<td>861</td>
</tr>
</tbody>
</table>

14.1.4 Handling, storage, and conditioning of raw sugar | 861 |
14.1.5 Cane raw sugar | 861 |
14.1.6 Developments in silo construction | 890 |
14.1.7 Ventilation of sugar silos | 892 |
14.4.2 Storage in sacks

14.5 Packaging

14.5.1 Historical development

14.5.2 Household size packages

14.5.2.1 Weighers

14.5.2.2 Paper or polyethylene packet packaging machines

14.5.2.3 Bundling and palletizing

14.5.2.4 Carton packaging machine

14.5.2.5 Vertical-form fill seal

14.5.2.6 Sachets/Packets

14.5.3 Packages for industrial uses

14.5.4 Ancilliary equipment

14.5.5 Bulk transport of granulated sugar

14.6 Transport air

14.7 Dust collection systems

14.7.1 Dry dust separators

14.7.2 Wet dust collectors

14.8 Safety precautions against dust explosions

14.8.1 Explosion parameters

14.8.2 Characteristics of an explosion

14.8.3 Preventive measures

14.8.4 Protective measures

14.8.5 Safety measures for individual items of equipment

15 Thick juice storage

15.1 Storage parameters

15.1.1 Types of syrups used for storage

15.1.2 Juice storage conditions

15.1.3 Effects of storage on thick juice quality

15.2 Equipment for storage

15.2.1 Tanks

15.2.2 Auxiliary equipment

15.3 Processing stored thick juice

16 Ion exchange and decolorization processes

16.1 Decolorization with activated carbon and bone char

16.1.1 Bone char

16.1.2 Activated carbon

17 Molasses desugarizing

18 Liquid sugars: Manufacture, properties

18.1 Light liquid sugar

18.1.1 Manufacture in sugar refineries

18.1.2 Manufacture from granulated sugar

18.2 Invert sugar syrups

18.2.1 Inversion by free acids

18.2.2 Inversion by immobilized acids

18.2.3 Inversion by enzymes

18.3 Burnt sugar solutions

18.4 Liquid brown sugars from syrups

18.5 Blended syrups

18.6 Caramel colors (Kulör)

18.7 Storage and transport

19 Special crystal sugar products
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.1</td>
<td>Molded cube or Adant process</td>
<td>962</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Pressed cube process</td>
<td>962</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Nib sugar</td>
<td>963</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Loaf sugar</td>
<td>963</td>
</tr>
<tr>
<td>19.3</td>
<td>Instant sugar</td>
<td>964</td>
</tr>
<tr>
<td>19.4</td>
<td>Amorphous sugar</td>
<td>965</td>
</tr>
<tr>
<td>19.5</td>
<td>Candy crystals</td>
<td>966</td>
</tr>
<tr>
<td>19.6</td>
<td>Brown and soft sugar</td>
<td>967</td>
</tr>
<tr>
<td>19.7</td>
<td>Sugar co-crystallises</td>
<td>968</td>
</tr>
<tr>
<td>19.8</td>
<td>Mixtures of white sugars and other ingredients</td>
<td>968</td>
</tr>
<tr>
<td>19.9</td>
<td>Fondant</td>
<td>969</td>
</tr>
<tr>
<td>19.10</td>
<td>Noncentrifugal sugars</td>
<td>969</td>
</tr>
<tr>
<td>19.11</td>
<td>Sugar from organic farming</td>
<td>971</td>
</tr>
<tr>
<td>20</td>
<td>Quality and storage of molasses</td>
<td>973</td>
</tr>
<tr>
<td>20.1</td>
<td>Quality-determining constituents of molasses</td>
<td>974</td>
</tr>
<tr>
<td>20.2</td>
<td>Physical properties of molasses</td>
<td>984</td>
</tr>
<tr>
<td>20.3</td>
<td>Utilization of molasses</td>
<td>987</td>
</tr>
<tr>
<td>21</td>
<td>Microbiology</td>
<td>993</td>
</tr>
<tr>
<td>21.1</td>
<td>Beet sugar manufacture</td>
<td>993</td>
</tr>
<tr>
<td>21.2</td>
<td>Cane sugar manufacture</td>
<td>1001</td>
</tr>
<tr>
<td>21.3</td>
<td>Microbiological problems with other process steps</td>
<td>1000</td>
</tr>
<tr>
<td>22</td>
<td>Biological purification of sugar factory waste water</td>
<td>1008</td>
</tr>
<tr>
<td>22.1</td>
<td>Water system of a beet sugar factory</td>
<td>1008</td>
</tr>
<tr>
<td>22.2</td>
<td>Sprinkler or surface irrigation</td>
<td>1010</td>
</tr>
<tr>
<td>22.3</td>
<td>Ponds (Lagooning)</td>
<td>1010</td>
</tr>
<tr>
<td>22.4</td>
<td>Aerated ponds</td>
<td>1011</td>
</tr>
<tr>
<td>22.5</td>
<td>Activated sludge processes</td>
<td>1013</td>
</tr>
<tr>
<td>22.6</td>
<td>Combined processes</td>
<td>1014</td>
</tr>
<tr>
<td>22.7</td>
<td>Lagooning and sprinkler irrigation</td>
<td>1014</td>
</tr>
<tr>
<td>22.8</td>
<td>Lagooning and activated sludge treatment</td>
<td>1014</td>
</tr>
<tr>
<td>22.9</td>
<td>Anaerobic-aerobic processes</td>
<td>1014</td>
</tr>
<tr>
<td>22.10</td>
<td>Ammonia stripping and biological purification</td>
<td>1016</td>
</tr>
<tr>
<td>22.11</td>
<td>Use of antifoaming agents</td>
<td>1017</td>
</tr>
<tr>
<td>22.12</td>
<td>Regulations for discharge of waste water</td>
<td>1017</td>
</tr>
<tr>
<td>23</td>
<td>Developments in process control and data management</td>
<td>1019</td>
</tr>
<tr>
<td>23.1</td>
<td>Basic elements of process control</td>
<td>1019</td>
</tr>
</tbody>
</table>